Cita:
Iniciado por NSD Otra forma mucho mas rapida (aunque no hay forma directa de aproximar a n decimales) es mediante funciones trigonometricas.
La formula seria: n * seno (180º / n) < PI < n * tangente (180º / n)
Para n = 3 => 2.598 < PI < 5.196
Para n = 4 => 2.828 < PI < 4
Para n = 5 => 2.938 < PI < 3.632
Para n = 6 => 3 < PI < 3.464
Para n = 10 => 3.09 < PI < 3.249
Para n = 20 => 3.128 < PI < 3.167
Para n = 60 => 3.14 < PI < 3.144
Para n = 90 => 3.14 < PI < 3.142
Para n = 360 => 3.1415 < PI < 3.1416
Para n = 720 => 3.14158 < PI < 3.14161
Para n = 1800 => 3.141591 < PI < 3.141958
Para n = 3600 => 3.1415922 < PI < 3.1415934
Para n = 9000 => 3.14159259 < PI < 3.141592781
Para n = 18000 => 3.141592638 < PI < 3.141592685
y para n = 72000=> 3.141592653 < PI < 3.141592656
el costo del calculo es fijo y la precicion depede de n.
no escribi el fiddle ya es que es solo un calculo matematico simple.
Jajajaja pero independientemente de si es un calculo matemático simple esto son desafíos de programación
así que antes de que el gato gruñón te de unos azotes has el fiddle
Saludos