Ver Mensaje Individual
  #4 (permalink)  
Antiguo 21/01/2009, 09:13
xayide
 
Fecha de Ingreso: febrero-2006
Mensajes: 174
Antigüedad: 18 años, 10 meses
Puntos: 0
Respuesta: problemas objetos y clases

De todas formas, algo no estoy haciendo bien.

Tengo una clase llamada UTM2LatLon (un módulo). Y quiero llamar a esta clase desde otro módulo:

lo pongo tal cual:

CLASE UTM2LatLon

Código:
from math import pi, sin, cos, tan, sqrt

class UTM2LatLon:

    #LatLong- UTM conversion..h
    #definitions for lat/long to UTM and UTM to lat/lng conversions
    #include <string.h>
    
    _deg2rad = pi / 180.0
    _rad2deg = 180.0 / pi
    
    _EquatorialRadius = 2
    _eccentricitySquared = 3
    _ellipsoid = [
    #  id, Ellipsoid name, Equatorial Radius, square of eccentricity    
    # first once is a placeholder only, To allow array indices to match id numbers
    [ -1, "Placeholder", 0, 0],
    [ 1, "Airy", 6377563, 0.00667054],
    [ 2, "Australian National", 6378160, 0.006694542],
    [ 3, "Bessel 1841", 6377397, 0.006674372],
    [ 4, "Bessel 1841 (Nambia] ", 6377484, 0.006674372],
    [ 5, "Clarke 1866", 6378206, 0.006768658],
    [ 6, "Clarke 1880", 6378249, 0.006803511],
    [ 7, "Everest", 6377276, 0.006637847],
    [ 8, "Fischer 1960 (Mercury] ", 6378166, 0.006693422],
    [ 9, "Fischer 1968", 6378150, 0.006693422],
    [ 10, "GRS 1967", 6378160, 0.006694605],
    [ 11, "GRS 1980", 6378137, 0.00669438],
    [ 12, "Helmert 1906", 6378200, 0.006693422],
    [ 13, "Hough", 6378270, 0.00672267],
    [ 14, "International", 6378388, 0.00672267],
    [ 15, "Krassovsky", 6378245, 0.006693422],
    [ 16, "Modified Airy", 6377340, 0.00667054],
    [ 17, "Modified Everest", 6377304, 0.006637847],
    [ 18, "Modified Fischer 1960", 6378155, 0.006693422],
    [ 19, "South American 1969", 6378160, 0.006694542],
    [ 20, "WGS 60", 6378165, 0.006693422],
    [ 21, "WGS 66", 6378145, 0.006694542],
    [ 22, "WGS-72", 6378135, 0.006694318],
    [ 23, "WGS-84", 6378137, 0.00669438]
]
    def _UTMLetterDesignator(Lat):
    #This routine determines the correct UTM letter designator for the given latitude
    #returns 'Z' if latitude is outside the UTM limits of 84N to 80S
    #Written by Chuck Gantz- [email protected]"""
    
        if 84 >= Lat >= 72: return 'X'
        elif 72 > Lat >= 64: return 'W'
        elif 64 > Lat >= 56: return 'V'
        elif 56 > Lat >= 48: return 'U'
        elif 48 > Lat >= 40: return 'T'
        elif 40 > Lat >= 32: return 'S'
        elif 32 > Lat >= 24: return 'R'
        elif 24 > Lat >= 16: return 'Q'
        elif 16 > Lat >= 8: return 'P'
        elif  8 > Lat >= 0: return 'N'
        elif  0 > Lat >= -8: return 'M'
        elif -8> Lat >= -16: return 'L'
        elif -16 > Lat >= -24: return 'K'
        elif -24 > Lat >= -32: return 'J'
        elif -32 > Lat >= -40: return 'H'
        elif -40 > Lat >= -48: return 'G'
        elif -48 > Lat >= -56: return 'F'
        elif -56 > Lat >= -64: return 'E'
        elif -64 > Lat >= -72: return 'D'
        elif -72 > Lat >= -80: return 'C'
        else: return 'Z'    # if the Latitude is outside the UTM limits
    
    
    def UTMtoLL(ReferenceEllipsoid, northing, easting, zone):
        #converts UTM coords to lat/long.  Equations from USGS Bulletin 1532 
        #East Longitudes are positive, West longitudes are negative. 
        #North latitudes are positive, South latitudes are negative
        #Lat and Long are in decimal degrees. 
        #Written by Chuck Gantz- [email protected]
        #Converted to Python by Russ Nelson <[email protected]>"""
    
        k0 = 0.9996
        a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
        eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
        e1 = (1-sqrt(1-eccSquared))/(1+sqrt(1-eccSquared))
        #NorthernHemisphere; //1 for northern hemispher, 0 for southern
    
        x = easting - 500000.0 #remove 500,000 meter offset for longitude
        y = northing
    
        ZoneLetter = zone[-1]
        ZoneNumber = int(zone[:-1])
        if ZoneLetter >= 'N':
            NorthernHemisphere = 1  # point is in northern hemisphere
        else:
            NorthernHemisphere = 0  # point is in southern hemisphere
            y -= 10000000.0         # remove 10,000,000 meter offset used for southern hemisphere
    
        LongOrigin = (ZoneNumber - 1)*6 - 180 + 3  # +3 puts origin in middle of zone
    
        eccPrimeSquared = (eccSquared)/(1-eccSquared)
    
        M = y / k0
        mu = M/(a*(1-eccSquared/4-3*eccSquared*eccSquared/64-5*eccSquared*eccSquared*eccSquared/256))
    
        phi1Rad = (mu + (3*e1/2-27*e1*e1*e1/32)*sin(2*mu) 
                   + (21*e1*e1/16-55*e1*e1*e1*e1/32)*sin(4*mu)
                   +(151*e1*e1*e1/96)*sin(6*mu))
        phi1 = phi1Rad*_rad2deg;
    
        N1 = a/sqrt(1-eccSquared*sin(phi1Rad)*sin(phi1Rad))
        T1 = tan(phi1Rad)*tan(phi1Rad)
        C1 = eccPrimeSquared*cos(phi1Rad)*cos(phi1Rad)
        R1 = a*(1-eccSquared)/pow(1-eccSquared*sin(phi1Rad)*sin(phi1Rad), 1.5)
        D = x/(N1*k0)
    
        Lat = phi1Rad - (N1*tan(phi1Rad)/R1)*(D*D/2-(5+3*T1+10*C1-4*C1*C1-9*eccPrimeSquared)*D*D*D*D/24
                                              +(61+90*T1+298*C1+45*T1*T1-252*eccPrimeSquared-3*C1*C1)*D*D*D*D*D*D/720)
        Lat = Lat * _rad2deg
    
        Long = (D-(1+2*T1+C1)*D*D*D/6+(5-2*C1+28*T1-3*C1*C1+8*eccPrimeSquared+24*T1*T1)
                *D*D*D*D*D/120)/cos(phi1Rad)
        Long = LongOrigin + Long * _rad2deg
        return (Lat, Long)
y lo llamo desde otra clase así:

Código:
from UTM2LatLon import *

utm=UTM2LatLon()
(lat, lon)=utm.UTMtoLL(23, 579682, 4791031, 30)
print lat
print lon
el error que me da es:

TypeError: UTMtoLL() takes exactly 4 arguments (5 given)

¿A qué se debe?

Gracias